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Quantitative Structure-Activity Relationship (QSAR) Paradigm – Hansch
Era to New Millennium

Asim Kumar Debnath*

Lindsley F. Kimball Research Institute of The New York Blood Center, 310 E 67th Street, New York, NY 10021,
U.S.A.

Abstract: The analysis of structure-activity relationships started probably more than hundred years ago but
the concept of quantitatively correlating physicochemical properties of molecules with their biological
activities, termed as quantitative structure-activity relationship (QSAR), was initiated by Corwin Hansch and
his groups in early 1960. Many new methods have emerged since then. The concept evolved from 2D QSAR to
3D QSAR and lately another dimension (4D QSAR) has been added. This evolution is briefly reviewed here.

INTRODUCTION contribution of the substituent and represented by log
PX/PH, σ is the Hammett electronic descriptor of the
substituents [10], represented by log KX/KH, ES is Taft’s
steric parameter [11] and a, b and c are the appropriate
coefficients. In these expressions PX and PH are the
octanol/water partition coefficients of the substituted and
unsubstituted compounds, respectively, and KX and KH are
the ionization constants of the meta- or para-substituted and
unsubstituted benzoic acids at 25 °C, respectively.

Understanding the role of chemical structure in
influencing biological activity is critical. Though the quest
for structure-activity relationship studies started in late 19th

century, only the work of Corwin Hansch in the early 1960s
put forth a mathematical model to correlate biological
activity with chemical structure and revolutionized the field
of drug research. For the last forty years, the field has
progressed immensely and several review articles covering
different aspects of this field have been published [1-7]. Due
to the limited scope and space for this mini-review, the
author will only focus on the evolution of different QSAR
methods for drug design. No attempt will be made to
describe any descriptors (parameters) or statistical techniques
necessary to develop QSAR models.

Correlation models can be generated by using a single
parameter or a combination of parameters. The parameters
can be from experimental values (e.g., π, log P, σ, etc.) or
from theoretically calculated values [e.g., ClogP, energies of
lowest unoccupied molecular orbitals (LUMO) and highest
occupied molecular orbitals (HOMO), charge, etc].

CLASSICAL 2D QSAR
Hansch and co-workers introduced the parabolic model in

QSAR analysis after realizing that biological activity of
hydrophobic drugs started to level of or decrease after
reaching the optimum value. This was attributed to the
entrapment of the drugs in the lipid phase of the transport
process [12,13]. They analyzed a series of datasets and
proposed a second-order relationship of hydrophobicity (log
P) with biological activity as follows:

Hansch’s Method and Related Approaches

The first application of QSAR came from Hansch et al. in
1962 when they correlated the plant growth regulatory
activity of phenoxyacetic acids to Hammett constants and
partition coefficients [8]. The major breakthrough in QSAR
occurred later in 1964, when Hansch et al., showed that the
biological activity could be correlated linearly by free-energy
related terms (different physicochemical parameters) [9]. This
approach was originally coined as Linear Free Energy
Relationships (LFER) and later changed, more appropriately,
to extra thermodynamic approach and expressed by the
following equation:

log 1/C = a log P + b(log P)2 + c

where a and b are the coefficients of the log P and (log P)2

terms, respectively, and c is a constant term.

Kubinyi made an important contribution in QSAR
methodology in 1977 when he first proposed the bilinear
model [14,15]. In a large number of cases, it has been found
that the biological activity increases with hydrophobicity
linearly up to a certain point and then decreases in a linear
fashion. The differences between observed and calculated
biological activities were found to be high if parabolic
models were used. The bilinear model to describe this non-
linear dependence of biological activity of drugs on
hydrophobicity was expressed as:

log 1/C = aπ + bσ + cES +..........+ constant

where C is the molar concentration of the compound to
produce a defined biological response, π is the hydrophobic
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The terms a, b and c are linear in nature and can be
calculated by multiple regression analysis whereas β is a
non-linear term and must be calculated by an iterative
method.

where A is the activity data, ai is the contribution of the ith
substituent and xi takes a value of 1 when the substituent is
present and 0 when it is absent; µ is the average contribution
of the parent molecule and is a constant term.

The introduction of Hansch’s simple linear and parabolic
models and Kubinyi’s bilinear model made a considerable
impact on our understanding of how chemical structures
influence biological activity. The application of these
methods surged dramatically, as reflected in a sharp increase
in the number of publications. During 1962-1969, just
Hansch’s group published forty-three papers related to
QSAR (personal communications), which covered a wide
variety of areas e.g., plant growth regulation, enzyme
inhibition, tissue distribution, sweetness, drug-protein
interactions, hapten-antibody interactions, metabolism to
name a few. In period from 1970-1979, 113 papers were
published by Hansch’s group covering the areas already
mentioned along with applications in pesticide design,
antibacterial, antifungal, anticancer and antimalarial drugs,
immunochemistry, fibrinolytics, etc. During 1980-1989
Hansch’s group published 80 papers on QSAR, many of
which dealt with cytotoxicity, mutagenicity and
carcinogenicity issues. Hansch’s group also incorporated the
three-dimensional structure of receptors in understanding the
mechanistic aspects of ligand-receptor interactions [16-19].
This trend continued with 58 publications by this group
during 1990-1999 and many of these articles emphasized
comparative QSAR studies [20-24].

The mathematical model also includes symmetry
equations (often called restriction equations), which assume
that the summation of contributions of all substituents in a
particular position is 0. According to this assumption, Σaixi
= 0. Several structure-activity studies have used this method
to develop models [26-30].

The major drawbacks of the Free-Wilson method are: (1)
the activity contribution of all substituents including H has
to be considered; (2) the summation of the group
contributions at each position, the so called symmetry
assumption, has to be zero; (3) the constant term (µ) should
be an over-all average of the biological activity of all the
compounds used to develop the QSAR model.

To circumvent the major drawbacks of the Free-Wilson
method, Fujita and Ban in 1971, proposed a modified
mathematical equation [31], using the logarithm of activity,
which is a free energy related term and additive in nature,
represented as follows:

log A/A0 = ΣGiXi

where A and A0 are the activity data of the substituted and
unsubstituted compounds, respectively, and Gi is the
logarithm of the activity contribution of the ith substituent,
and Xi has a value of 1 or 0 depending on the presence of the
substituent or its absence, respectively.

Hansch’s era in QSAR, which started some 40 years ago
is still continuing in full force by contributing QSAR related
publications and by generating software and databases to lay
the foundation, in his words, for ‘a science of chemico-
biological interactions’. Towards this end, for the last 35
years Hansch’s group at Pomona College has been collecting
data from literature and created a computer database known
as C-QSAR. The current database contains QSAR equations
from both physicochemical data (7700) and Biological data
(6300) (source- CQSAR.com web site). From these data
14000 QSAR equations have been developed so far, which
are part of this database. The greatest advantage of these
databases is that they provide the opportunity to derive
comparative QSAR from many points of view and to
facilitate lateral validation of any new QSAR with already
developed QSAR in the database.

For a set of substituents, the equation takes the following
form:

log A = ΣGiXi + µ
where µ is a constant.

The major advantages of this modified method are: (1)
the structural matrix does not need to be transformed; (2) no
restriction equation is necessary; (3) the group contribution
at each position is based on the parent compound (i.e., H);
(4) the constant term (µ) is calculated by the least square
method and is the theoretically predicted value for the
unsubstituted compound. The addition or omission of a
compound does not affect markedly the value of group
contributions. These advantages make the Fujita-Ban
method preferable over the Free-Wilson method. Several
applications of this method have been reported [32-35].BEYOND HANSCH

Another QSAR approach was proposed by Free and
Wilson in 1964 based on a simplistic mathematical
approach for structure-activity studies in a congeneric series
[25]. The method was based on the additivity principle.
According to this principle, substituent groups contribute in
constant amounts and in an additive manner towards
biological activity and do not depend on any other structural
changes in the compound. In their original publication [25],
Free and Wilson put forward a generalized mathematical
model, as follows:

Kier and Hall have introduced a method for decoding
structural features such as size, branching, unsaturation,
cyclicity, heteroatom content, etc. in quantitative terms and
designated molecular connectivity [36-38]. These structural
indices were used as parameters to correlate structure with
activity (property). The indices are calculated based on the
hydrogen suppressed molecular structure or graph. Simple
connectivity indices (0χ, 1χ, 2χ), to more complex valence
connectivity indices (0χv,

 1χv, etc.), Kappa indices (1κ, 2κ,
etc.) and lately electrotopological state (E-state values) and
Molconn-Z parameters have been used in numerous
structure-activity applications [39-42]. Several otherA = Σaixi + µ
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topological indices proposed by Randic [38,43-45], Basak
[46-50] and Balaban [48,51,52] have also been used in
toxicity prediction and many biological (QSAR) and
quantitative structure property relationship (QSPR) studies.
These indices have been used in diversity analysis [53] and
in analyzing drug likeness of molecules in databases [54].

values are also calculated to validate the model. The
Bayesian regularization algorithm has also been used to
eliminate the need for a test model since it minimizes a
linear combination of errors and weights [64,67].

Breindl et al. recently reported the use of a back-
propagation artificial neural network for predicting the
octanol/water partition coefficient (log P) of a large number of
organic chemicals [68].

Klopman and his coworkers developed a new generation
Computer Automated Structure Evaluation (CASE and
multi-CASE) program useful in drug design [55,56]. The
program generates fragments consisting of 2-10 heavy atoms
of all possible chains from the input structure. These
fragments are considered as structural descriptors and used to
derive QSAR models for prediction of biological activity.
Fragments that are responsible for activity (biophore), and
those detrimental for activity (biophobe) are identified by
statistical evaluation based on a binomial distribution. For
the prediction of biological activity of a new compound, the
program uses the information from the learning set and
assigns probabilities for the compound to be active or
inactive depending on the presence of biophores or
biophobes.

The major advantages of the neural networks are that they
are non-parametric and non-linear and few statistical
assumptions are required to build the model. Their major
disadvantage is that the models cannot be easily interpreted,
especially in physicochemical terms.

NEW QSAR METHODS

HQSAR

Hologram QSAR (HQSAR) is a relatively new
technique, which does not require any physicochemical
descriptors or 3D structure to generate structure-activity
models [69]. The method is based on the input of 2D
structures and biological activity. The structures are
converted to all possible linear, branched and overlapping
fragments. These fragments are then assigned a specific
integer by using a cyclic redundancy check (CRC)
algorithm. These integers are then hashed to a bin in an
integer array of fixed length. These arrays are known as the
molecular hologram and the bin occupancies of the molecular
holograms are used as the descriptors. These descriptors are
expected to encode the chemical and topological information
of molecules. The QSAR model is developed by using the
partial least squares (PLS) regression technique and validated
by the “leave-one-out” cross-validation technique. Once the
final model is obtained, PLS yields the following equation
correlating hologram bins with activity:

Klopman and Ptchelintsev recently applied the Multi-
CASE method to a series of 71 triazole alcohols to derive
structure-antifungal, structure-teratogenicity and structure-
therapeutic index relationships [57]. In a more recent study,
Klopman and Tu have selected a set of 1819 chemicals out
of 14,156 tested by the National Cancer Institute (NCI) and
identified 74 fragments that could explain the anti-HIV
activity of these compounds using this method [58].

Neural network (NN) techniques have been used
successfully in QSAR [59-66]. This method is generally
used when the data set size is large and the data cannot be
interpreted easily by linear functions. This method is
generally used in QSARs to describe a model with a non-
linear hypersurface.

Although there are different ways of constructing neural
networks, the multilayer feed-forward network with back-
propagation is the one primarily used in drug design. In
such a model the units are organized in layers starting with
input units that are connected to the output unit through
some layers of hidden units. Signals of representative input
information about the drugs (parameters) are propagated
forward using connecting weights, from the input layer to the
output layer via the hidden units, and the output signals
represent the predicted activity. Differences between the
predictions and known activity are then used to adjust the
weights “backward” until those differences become small.
The major step in a neural network is to train the network
using a representative training set. The design aspect of the
neural network is very critical. If a network is trained with a
large number of parameters it may over train the model and
generate unreliable prediction results due to overfitting. On
the other hand, an under trained neural network with too few
parameters may generate poor results for new predictions.
The quality of the fit can be validated by “leave-one-out”
cross validation whereby data are removed systematically, a
neural network is trained and a prediction of the removed
data is made based on the trained network. The residual root
mean squared error (RmsE) or correlation coefficient (R)

 

Ai = C +       Xi lCil

L

l=1
Σ

In this expression, Ai is the activity of compound i, C is a
constant, Xil is the hologram occupancy value at position i
or bin l and Cil is the coefficient for the corresponding bin
from the PLS run, L is the hologram length.

The fundamental difference between the HQSAR method
and other fragment based methods, e.g., the Free-Wilson
method, the multi-CASE method, is that HQSAR encodes
all possible fragments including overlapping fragments. The
method is very fast and can also be used to predict
physicochemical properties, e.g. ClogP. Several applications
of the HQSAR method were reported recently [69-71].

Inverse QSAR

An inverse QSAR method implemented in a new library
design technique, known as Focus-2D, has been recently
reported by Cho et al. to rationally design a virtual peptide
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combinatorial library [72,73]. A preconstructed QSAR was
used, as one of the methods, to select compounds with high-
predicted activity in a virtual library. The method was
validated by developing a QSAR equation using GA-PLS
(Genetic Algorithm-Partial Least Squares) method from a
training set of 28 bradykinin-potentiating (BK) pentapeptides
and predicting the activity of the two most active peptides
from the equation. Topological descriptors, calculated by the
Molconn-X program; several amino acid based descriptors
(Z1, Z2 and Z3) [74] related to hydrophobicity, bulk and
electronic properties, respectively; isotropic surface area
(ISA) and electronic charge index (ECI) were used [75].
Significant cross-validated correlation coefficients and low
standard errors of predictions were achieved with both the
topology-based study and the amino acid descriptor-based
study. The method suggested a number of amino acids as
the preferred building blocks. These amino acids were also
present most frequently in the known active BK peptides.
The results obtained from the training set of 28
pentapeptides were used to extrapolate on all the
theoretically possible pentapeptides and comparable results
were obtained. As the training set population was very small
compared to the number of theoretically possible peptides, a
modified “degree of fit” condition was used to control the
degree of extrapolation and not to predict peptides that are
structurally too distant from the training peptides.

100(c0 + c1)/ (m0 + m1) represents the percentage of overall
accuracy for all compounds.

The advantages and disadvantages of the binary QSAR
method have also been addressed by Labute [76]. The
method should be useful for (a) selecting (prioritizing)
compounds for HTS, (b) designing focused combinatorial
libraries, and (c) screening and synthesizing virtual libraries.
One major drawback of this method is that the interpretation
of the importance of descriptors in developing the model is
not easy.

The first report concerning the application of binary
QSAR to a drug discovery problem involving the QSAR
analysis of estrogen receptor ligand was published recently
by Gao et al. [78].

3D QSAR METHODS

The QSAR approaches by Hansch’s group and others
mentioned above have provided us with the tools to
quantitate the relationships between the structural parameters
associated with the change in structure and physical or
biological activities. These methods have helped us to
delineate drug-receptor interactions and to develop several
commercial drugs and pesticides [7]. However, these
methods have some limitations, the most serious among
them is the lack of availability of numerical descriptions, for
new or unusual substituents, which are required to develop
any meaningful model. The other limitations are that one
needs considerable knowledge in physical organic chemistry
to design a molecule based on the prediction made by any
QSAR equation and the results cannot be interpreted
graphically to understand the interaction pattern. The
proponents of 3D QSAR methods believe that most
traditional QSAR limitations can be overcome by 3D QSAR
methods. Several 3D QSAR modeling approaches have
emerged in 1980s such as, active analog approach, molecular
shape analysis, distance geometry and CoMFA. Several new
methods have been proposed in the 1990s. This field has
grown so much during the last decades that it is beyond the
scope of this review to go over the subject matter in detail
instead the author will touch upon some of the most widely
used and newer 3D QSAR methods and their applications for
drug design.

Binary QSAR

 Introduction of combinatorial chemistry for designing
large libraries compelled researchers to discover rapid robotic
methods for assaying millions of compounds in a short
period of time. This rapid method is referred to as high
throughput screening (HTS). Often, this method just
generates yes/or no (active/or inactive; pass/ or fail) data and
the results are prone to error. Current QSAR methodologies
require less heterogeneous compounds with continuous
activity data and lower error margins to have any predictive
value. To overcome methodological problems in current
QSAR techniques and to handle such a huge amount of
binary data from HTS, Labute introduced a method termed
‘binary QSAR’ to handle binary measurement data from
HTS [76]. Two recent reports described the successful use of
this method for analyzing large sets of binary data [77,78].
This method is expected to help in extracting important
structural information required for biological activity and to
design more focused libraries for drug discovery. For
methodological details readers are referred to recent articles of
Labute’s [76] and Gao et al. [78].

Hopfinger et al. in 1980 incorporated the molecular shape
of molecules in the QSAR analysis and they designated the
method as molecular shape analysis (MSA) [79]. The
primary goal of this method is to incorporate conformational
analysis in QSAR. The few basic steps to construct 3D
QSAR using this method are as follows: (1) Conformational
analysis; (2) Identification of the most likely biologically
active conformation of a set of molecules under study; (3)
Selection of a candidate shape reference compound; (4)
Superposition of each active conformation onto the reference
molecule: (5) Determination of molecular shape descriptors;
(6) Determination of possible other Hansch type descriptors;
(7) Construction of trial MSA 3D QSAR

The performance of the QSAR model is measured by
evaluating three levels of prediction from the model. If m0 is
the number of active compounds, m1 is the number of
inactive compounds and c0 is the number of correctly
predicted active and c1 is the number of correctly predicted
inactive compounds by the model, then

100(c0/m0) represents the percentage accuracy for active
compounds;

100(c1/m1) represents the percentage accuracy for inactive
compounds; and

Several molecular descriptors such as the common
overlap steric volume Vov, nonoverlap volume Vnon, etc.
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have been calculated as a quantitative measure of molecular
shape. These 3D descriptors along with standard
physicochemical properties used in Hansch analysis are used
to generate trial 3D QSAR models. Applications of this
MSA 3D QSAR method have been described [79-82].

energy fields using the DELPHI program [102]. The steric
field based on indicator variables has also been used [104].
Due to a large number of variables in CoMFA type studies,
it became evident that perhaps improved as well as newer
methods were needed to discriminate between important and
less important variables. A number of methods have been
proposed and applied such as GOLPE (generating optimal
linear PLS estimation) [105,106] and q2-GRS (cross-
validated (q2) q2-guided region selection) [107].

Golender et al. in 1983 introduced an expert system,
known as Apex-3D that simulates the intelligence of a drug
researcher in identifying the pharmacophores responsible for
activity or inactivity from a set of molecules and their
biological activity [83,84]. Therefore, this method can be
used to automatically deduce the biophore (pharmacophore)
from three-dimensional structures and biological activity
data. This biophore can be used as a reference for optimizing
the superposition of ligands to build the 3D QSAR models,
which can be used to predict the activity of new compounds
to be synthesized. A few applications of this method have
been reported [85-87].

In 1988, Doweyko introduced another 3D QSAR method
known as the hypothetical active-site lattice (HASL) [108].
The method involves the creation of a four-dimensional (4D)
molecular lattice space based on the three-dimensional
Cartesian coordinates of an arbitrarily selected compound
from a set of compounds to be studied and assignment of
parameters corresponding to the physicochemical properties
of the atom in that space (representing the fourth dimension).
A second molecule is chosen and the lattice is generated as
before and then compared with the reference molecule. The
degree of correspondence between these molecules is
determined by using a FIT function. The FIT function,
which is a convenient measure of matching, can be
represented as a sum of the fraction of the lattice points of a
molecule and the reference lattices that are found to be
common and represented by the following simple
expression:

The major advances in 3D QSAR methodology came
with the introduction of the Comparative Molecular Field
Analysis (CoMFA) technique by Crammer et al. in 1988
[88]. They envisioned that the changes in biological activity
(or binding affinities) of any molecule could be correlated
with their steric and electrostatic energies. The important
steps in the CoMFA method are: (1) determination of the
bioactive conformation of each molecule; (2) alignment of the
molecules using either manual or automated methods in a
manner that best represents the interaction of the molecule
with the target receptor; (3) sampling of steric and
electrostatic fields with a probe (e.g. sp3 with a 1+ charge)
placed in all intersections of a regularly placed grid with a
grid size of 1-2 Å  that encompasses all the molecules; (4)
establishment of quantitative relationships of these
interaction energies with biological activity by the partial
least squares (PLS) technique and cross-validation; (5)
displaying results through contour plots for visual
understanding.

FIT = L (common) / L (ref) + L (common) /L (molecule)

When the molecular lattices are identical to the reference
lattice then the value of the Fit function will be 2. This
provides an efficient way of matching two molecules. This
information and the binding data are then merged to create
the HASL, which is expected to effectively capture the shape
and binding properties of the receptor site. The HASL can be
used to predict the binding and orientation of an inhibitor.
This method has been applied to derive QSAR in several
cases [109,110].

Since the first publication of this method and its
inception in the computer program SYBYL [89] a surge in
applications of CoMFA occurred. For an excellent
compilation of references till 1997 see Kim [90,91]. Despite
the overwhelming success of CoMFA, this method, like any
other methods, has some limitations [92]. To overcome
these limitations several new techniques were developed.
One of the most difficult problems often encountered in
developing CoMFA models is the alignment of molecules.
The alignment basically represents the orientation of a
molecule as it binds to a receptor site. Any miscue in this
crucial stage may produce erroneous and misleading
predictions of the interaction sites. To avoid the alignment
problem, some new descriptors such as CoMMA [93], EVA
[94,95], MS-WHIM [96], CoMSIA [97,98] have been
proposed. Their properties do not depend on the orientation
of the molecule and also no alignment is necessary to
develop these descriptors. Several new fields, besides
CoMFA fields (steric and electrostatic), have also been
proposed e.g., hydrophobic fields such as hydrophobic
interactions (HINT) [99], molecular lipophilicity potentials
(MLP) [100]; H-bonding field using GRID [101]; molecular
orbital fields such as HOMO and LUMO [102,103];
electrotopological state (E-state) fields [39]; desolvation

In 1989, Ghose et al. proposed a new method of
modeling (REMOTEDISC) the binding site cavity based on
binding data for a series of molecules [111]. The method
utilizes the three-dimensional structures and the
physicochemical properties of molecules (calculated using
atom-based methods) to model the binding site cavity. The
method assigns different weights to the physicochemical
properties of the molecule at different parts of the binding
cavity that determines the binding of the molecule. This
method has also been applied to model binding site cavities
[112,113].

Walters et al. in 1994 introduced a method to construct
three-dimensional atom-based models of receptor sites using
only the structure-activity information of a small set of
compounds. The method was termed as genetically evolved
receptor models (GERM) [114]. A genetic algorithm is used
in this program to construct and improve the model so that
the binding energy correlates with the experimentally
determined biological activity of the test series. The
activities of the yet to be synthesized compounds can be
predicted by docking them onto the receptor model. The



192    Mini Reviews in Medicinal Chemistry, 2001, Vol. 1, No. 2 Asim Kumar Debnath

method has been used in generating 3D QSAR models
[115].

QSAR analysis [124]. The fundamental difference of this
method from CoMFA is that it incorporates conformational
and alignment freedom to the model development from a set
of structures with biological activity data by performing
conformational ensemble sampling. The fourth-dimension of
the 4D QSAR analysis comes from ensemble averaging.
According to the method, the active conformation, unlike
that of many other 3D QSAR methods, is not the minimum
energy conformation but the “active” conformation that
optimizes the 3D QSAR models. Instead of using systematic
conformational search, a multi-temperature molecular
dynamics (MDS) is used to generate the conformational
ensemble profiles (CEF). Sampling all the conformations
that are within 2 Kcal/mole of the minimum energy
conformation identifies the best “active” conformation of
each compound in the training set. This set of low energy
conformations is evaluated individually in the best 3D-
QSAR models. The alignment problem is resolved by a
similar sampling and evaluation technique. The
conformations of each compound are placed in a predefined
grid cell (similar to CoMFA) according to the trial
alignment, and 3D descriptors are computed and then
correlated with biological activity by the PLS technique.
The 3D QSAR models are generated from the PLS run. The
method is repeated until all the trial alignments are included
to develop the models. The active conformation is selected
from the optimum 3D QSAR model that predicts the
observed activity best. The PLS weighting for the
descriptors can be used as in CoMFA to generate graphical
contours. This method has been applied to develop 3D
QSAR models [124,125].

In 1994, Jain et al. reported 3D QSAR method known as
COMPASS that utilizes the molecular surface properties to
predict biological activity [116]. This method differs from
other methods such as CoMFA in that it utilizes the
physical properties, e.g., electrostatic field only at the
interface of the ligand and receptor. It uses non-linear rather
than linear statistics (such as MLR, PLS), and it
automatically selects the most probable bioactive
conformation and alignment. The method has been
successfully applied [117].

Hahn in 1995 proposed a receptor site modeling method
known as receptor surface models (RSM) [118,119]. A series
of aligned molecules with binding data are used to generate
the receptor surface models. These models can be used to
visualize the receptor-ligand interaction in a qualitative and
intuitive manner. These models can also be used to generate
descriptors that truly represent the three-dimensional nature
of the receptor site and these descriptors alone or in
combinations with 2D descriptors can be used to derive
QSAR. This method was also applied to the steroids
binding data [120,121] used by many as benchmark for
method validation and yielded somewhat better results than
were those obtained by either CoMFA or COMPASS
methods.

In 1997, So and Karplus put forward a 3D QSAR
method using molecular similarity matrices (SM) and a
genetic neural network (GNN) to derive the predictive
model, thus the name SM/GNN method [122]. Different
types of similarity matrices such as electrostatic similarity
matrix (ESM), shape similarity matrix (SSM) and van der
Waals (vdW) similarity matrix (VSM) were used as
molecular field parameters. A genetic algorithm was used to
select the variables and the biological activity was correlated
with these descriptors by a neural network technique. The
method was validated by the most commonly used
corticosteroid-binding globulin (CBG) data [122]. Unlike
CoMFA and CoMSIA, this method does not have any
visual analysis option; therefore it is difficult to interpret.
This method is also heavily dependent on the alignment.

Vedani et al. recently have introduced a 4D QSAR
approach implemented in software called Quasar [126].
According to these authors, this software uses 4D QSAR
concepts by incorporating an ensemble of multiple
conformations, orientations or protonation states of each
molecule as the fourth dimension to the model and thereby
reduces the bias resulting from selecting any single
conformation as the bioactive conformation and the
alignment resulting from those conformations. This method
is especially useful when there is no receptor structure
available to estimate the free energy of binding of the ligand
to the receptor. The method has been successfully applied to
a large series of NK-1 antagonists to develop 4D QSAR
models [126].Recently (2000), Polanski and Walczak reported the use

of molecular electrostatic potential (MEP) calculated for
specific areas on the molecular surface in 3D QSAR analyses
[123]. This method is known as COMSA. The method has
been applied to the steroid dataset [120,121] that was used
by Crammer et al. for the CoMFA study and obtained
somewhat improved results. A kohonen self-organizing
neural network and the partial least squares (PLS) methods
were used to develop the models. The method has been
applied to derive 3D QSAR models with data on both
biological activities and on physicochemical properties
[123].
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